
CDF/MEMO/STATISTICS/PUBLIC/7587

Bayesian limit software: multi-channel with
correlated backgrounds and efficiencies

Joel Heinrich—University of Pennsylvania

April 15, 2005

1 Introduction

Reference [1] described a Bayesian method for deriving limits from a single-channel
Poisson counting experiment, where the acceptance and background are treated as
nuisance parameters. The software associated with that approach is described in [2].

This note presents an approach to calculating Bayesian limits in a more general
case, with multiple channels whose acceptance and background priors are modeled via
Monte Carlo. This strategy permits correlations between the various acceptance and
background priors (e.g. between channels).

The N different channels could refer to histogram bins, or different decay modes,
or number of jets observed, or data sets with different triggers, etc. Correlations
between the nuisance parameters might arise, for example, due to a common luminosity
uncertainty among channels, or structure function uncertainties propagating into both
signal and background, or any source of systematic uncertainty associated with more
than one of the nuisance parameters.

The C code that implements this approach is available [3], and is also described in
this note.

2 The Problem

Given N channels, and nk observed events in the kth channel, k = 1, 2, . . . , N , the
Poisson probability of obtaining the observed result is

N∏
k=1

e−(sεk+bk)(sεk + bk)
nk

nk!

1



where s represents the parameter of interest (the cross section) and εk and bk are the
acceptance and expected background for the kth channel, respectively. (An “accep-
tance” parameter εk is typically a product of detector efficiency, branching fraction,
and luminosity, and has units of inverse cross section.) All the εk and bk have uncer-
tainties and are considered “nuisance parameters”. In the Bayesian approach, they are
assigned priors, which may be correlated. So we write the joint nuisance prior as

π(ε1, b1, ε2, b2, . . . , εN , bN)dε1db1dε2db2 · · · dεNdbN

and the marginalized posterior for s is proportional to

π(s)
∫∫
(2N)

∫
π(ε1, b1, ε2, b2, . . . , εN , bN)

[
N∏

k=1

e−(sεk+bk)(sεk + bk)
nk

nk!

]
dε1db1dε2db2 · · · dεNdbN

where 2N marginalization integrals are performed, and π(s), the prior for s, is assumed
for now to be independent of the joint nuisance prior.

3 Finite Bayesian Prior-Ensemble Approximation

Instead of doing the 2N marginalization integrals analytically, here we use Monte Carlo
integration. We use the joint nuisance prior to generate (including all correlations) M
random (ε1, b1, ε2, b2, . . . , εN , bN) vectors, which we save up in a big array (or ensemble)

ε11 b11 ε21 b21 . . . εN1 bN1

ε12 b12 ε22 b22 . . . εN2 bN2

ε13 b13 ε23 b23 . . . εN3 bN3
...

...
...

...
. . .

...
...

ε1M b1M ε2M b2M . . . εNM bNM

where each line represents a single random vector of 2N nuisance parameters, and a
second index for the line number has been inserted. Having stored such an array in
computer memory, say filled with 2NM numbers of (C or C++) type float, this array,
a finite Bayesian prior-ensemble, replaces the joint nuisance prior for all operations, in
our approximation.

Given this ensemble, our marginalized posterior for s then becomes

p(s) =
1

N
π(s)

M

M∑
i=1

[
N∏

k=1

e−(sεki+bki)(sεki + bki)
nk

nk!

]

where the normalization constant N is given by

N =
∫ ∞

0

π(s)

M

M∑
i=1

[
N∏

k=1

e−(sεki+bki)(sεki + bki)
nk

nk!

]
ds

2



4 Integrating the Marginalized Posterior

We specify an improper flat prior for s: π(s) = 1 for s ≥ 0 and π(s) = 0 for s < 0.
Then to calculate limits, we need to be able to evaluate the integral

I(s0) =
∫ ∞

s0

1

M

M∑
i=1

[
N∏

k=1

e−(sεki+bki)(sεki + bki)
nk

nk!

]
ds

which we rewrite as

I(s0) =
1

M

M∑
i=1

[∫ ∞

s0

N∏
k=1

e−(sεki+bki)(sεki + bki)
nk

nk!
ds

]

We define

ε′i ≡
N∑

k=1

εki b′i ≡
N∑

k=1

bki

which are the total acceptance and the total background (summed over the N channels)
for the ith line of the ensemble. Then we have

I(s0) =
1

M

M∑
i=1

[∫ ∞

s0

e−(sε′
i+b′

i)
N∏

k=1

(sεki + bki)
nk

nk!
ds

]

For each of the M integrals, we perform the substitution x = (s− s0)ε
′
i, yielding

I(s0) =
1

M

M∑
i=1

[
e−(s0ε′

i+b′
i)

ε′i
∏N

k=1 nk!

∫ ∞

0
e−x

N∏
k=1

(
x
εki

ε′i
+ s0εki + bki

)nk

dx

]

The product
∏N

k=1

(
x εki

ε′
i

+ s0εki + bki

)nk
appearing within the integral is just a poly-

nomial in x of degree n =
∑N

k=1 nk, so we need a method of evaluating the integral∫∞
0 e−xf(x)dx, where f(x) is a polynomial of degree n. We will use Gauss-Laguerre

quadrature[4], in which

∫ ∞

0
e−xf(x)dx =

J∑
j=1

wjf(xj) J = bn/2c+ 1

is exact for polynomials f(x) of degree n or less. The “abscissas” xj and the “weights”
wj are easily computed, xj being the jth root of L0

J(x), the Laguerre polynomial of
order J , for example. (Note that xj and wj depend on J .)

I(s0) =
1

M

 M∑
i=1

e−(s0ε′
i+b′

i)

ε′i
∏N

k=1 nk!


J∑

j=0

wj

N∏
k=1

(
xj

εki

ε′i
+ s0εki + bki

)nk




Even though Gauss-Laguerre quadrature is usually classified as a numerical inte-
gration method, we are really integrating with respect to s analytically, since we are
in precisely that case where Gauss-Laguerre quadrature is exact. This quadrature
method is very efficient for small numbers of observed events. For example, if a total

3



of n = 15 events (spread out over N channels) are observed, only J = 8 evaluations of
the function are necessary. For large n, we can truncate the sum over j at the point
where next term is negligible, since the wj become extremely small at large j.

Our upper limit su at credibility level β is then computed by solving

I(su) = (1− β)I(0)

numerically using Newton’s method. In some cases, it may be necessary to use a
truncated flat prior for s: π(s) = 1 for 0 ≤ s ≤ smax and π(s) = 0 for s < 0 or
s > smax. The upper limit is then obtained by solving

I(su)− I(smax) = (1− β)[I(0)− I(smax)]

for su.

5 An Example

We illustrate the procedure with the following example. We specify 4 channels, with
the prior for ε, the prior for b, and the number of observed events as given in this table:

chan ε prior b prior events
1 1.0± 0.2 4.00± 2.00 6
2 1.0± 0.1 1.60± 0.40 1
3 1.0± 0.01 0.25± 0.05 1
4 1.0± 0.2 5.00± 1.00 8

We further specify all eight priors as gamma distributions, with the central value and
uncertainty equal to the mean and standard deviation of the gamma distributions.
They are all taken to be independent in our example, except for the background priors
for channels 3 and 4, which are taken to be linearly dependent: we specify that the
expected background in channel 4 is exactly 20 times the expected background in
channel 3 (although neither is known precisely).

We then generate a prior ensemble, which in our example looks something like this:

ε1 b1 ε2 b2 ε3 b3 ε4 b4

1.1416 4.7548 1.0372 1.4205 1.0041 0.2347 1.0869 4.6935
0.8820 4.1672 1.1450 1.0760 0.9923 0.2351 1.1707 4.7025
1.1442 1.1252 1.0081 2.0481 0.9977 0.3270 1.1986 6.5394
1.2089 4.6549 0.9685 1.9612 0.9994 0.2266 1.4397 4.5329
1.0559 2.1078 0.9651 1.7600 0.9906 0.2176 0.8316 4.3526

...
...

...
...

...
...

...
...

Taking the ensemble size to be M = 150000, we obtain the associated 95% upper
limit su. For illustration, we repeat this five times (and also five times with M = 1500)
generating a new ensemble for each repetition, obtaining:

4



M = 150000 M = 1500
2.8738± 0.0011 2.8799± 0.0106
2.8764± 0.0011 2.8714± 0.0107
2.8746± 0.0011 2.8859± 0.0109
2.8765± 0.0011 2.8791± 0.0104
2.8765± 0.0011 2.8885± 0.0110

The table also illustrates an additional feature of the code that calculates the upper
limit; it estimates the statistical uncertainty (RMS) of the limit due to the finite Monte
Carlo sample size. Attempts to try to fold back the uncertainty of the numerical value of
the upper limit into the upper limit itself are considered nonstandard and unnecessary;
if more significant digits are needed, a larger value of M can be used. A more time
and memory consuming run with an ensemble size of 5 × 106 yields a 95% upper
limit of 2.8764 ± 0.0002. The particular case that we have chosen, with rather large
uncertainties on ε and b for channel 1, requires a relatively large M to establish the
upper limit to high accuracy; more typical cases with smaller prior uncertainties will
permit M to be smaller as well.

It is also important to look at the shape of the posterior p.d.f. for s. Code is
available to calculate the value of the posterior at a given s. In Fig. 1 we plot the
posterior twice, calculated using two independently generated prior ensembles of size
M = 100. The small sample size was chosen to make the Monte Carlo fluctuations
visible; with more reasonable values of M , the curves lie on top of one another.

s
0.0 1.0 2.0 3.0 4.0 5.0

Figure 1: Posterior p(s) and 95% upper limit from two independent prior ensembles
of size M = 100. (Small M chosen to exaggerate fluctuation due to Monte Carlo
statistics.)

5



6 An Alternative Cross Section Prior

A “correlated prior” method is suggested for the multiple channel case in [5]. To
implement that scheme here, we replace the joint nuisance prior in the expressions of
the previous section by

ε′π(ε1, b1, ε2, b2, . . . , εN , bN)dε1db1dε2db2 · · · dεNdbN

That is, we insert an additional factor of ε′ (the total acceptance). We will keep the
prior ensemble as previously defined, i.e. generated from π(ε1, b1, ε2, b2, . . . , εN , bN) as
before, and take the additional factor of ε′ as an extra numerical weight. This allows
us, for example, to compute limits using the flat (uncorrelated) cross section prior and
the corresponding correlated prior without regenerating the prior ensemble.

Our expression for the posterior p.d.f. then becomes

pc(s) =
1

Ic(0)M

M∑
i=1

[
ε′i

N∏
k=1

e−(sεki+bki)(sεki + bki)
nk

nk!

]

and its integral is computed using

Ic(s0) =
1

M

 M∑
i=1

e−(s0ε′
i+b′

i)∏N
k=1 nk!


J∑

j=0

wj

N∏
k=1

(
xj

εki

ε′i
+ s0εki + bki

)nk




(note the cancellation of an ε′i in the denominator), where the subscript label “c” has
been added to denote the alternative “correlated” prior.

In addition to the benefits described in [5], the correlated prior will normally yield a
smaller numerical uncertainty on the value of a limit (due to Monte Carlo fluctuations
in the prior ensemble) than will the corresponding flat cross section prior. This happens
because the flat uncorrelated prior gives the ith line of the prior ensemble an effective
“weight” in the posterior of ∼ 1/ε′i, while this weight is ∼ 1 when using the correlated
prior. This effect becomes most noticeable when the uncertainties on the acceptance
parameters are all relatively large, so that ε′i occasionally fluctuates close to zero.

7 The Software

The basic philosophy of the software is that the user is responsible for writing the
code to construct the prior ensemble in the expected format. All memory allocation
and deallocation is the responsibility of the user. The provided code will then handle
computing the posterior, integrating the posterior, and calculating limits. Although
the code is written in C, care was taken to ensure that the code will also compile and
run as C++. The header file genlimit.h declares all the associated functions. The
code is available from [3].

7.1 the prior ensemble

The prior ensemble is stored as an array of EB, where EB is defined as:

6



typedef struct {

float e,b;

}EB;

The user is responsible for allocating sufficient space to store the ensemble. If we
define nchan as the number of channels N , and nens as the number of lines M in the
ensemble, then

EB* ens = (EB*)malloc(nchan*nens*sizeof(EB));

in C, or

EB* ens = new EB[nchan*nens];

in C++ would create a pointer ens to a newly allocated block of memory with the
proper size to hold the ensemble. Schematically, filling the ensemble is illustrated by
this user code fragment

k=0;

for(i=0;i<nens;++i) {

for(j=0;j<nchan;++j) {

ens[k].e = acceptance(j);

ens[k].b = background(j);

++k;

}

}

where acceptance(j) and background(j) (which would be written by the user) are
assumed to provide random deviates appropriate for the jth channel (numbered 0 to
nchan-1 in the code). For simplicity, we omit any complications due to correlations in
this fragment. The file example.c provides a more general example with a correlation
between two channels.

7.2 the posterior p.d.f.

The value of the posterior p.d.f. at s is returned by

double cspdf(double s,double norm,int nchan,

int nens,const int nobs[],const EB* ens,PRIOR prior);

where the user must supply the array nobs[] which holds the number of observed
events in each channel, and norm, which is the value of I(0) (calculated by the code
described in the next section). The last argument is a switch allowing the user to
specify whether to use the basic flat cross section prior or the correlated version. The
two allowed values are flat and corr, defined in genlimit.h via the enumeration

typedef enum {

flat=10,

corr=20

} PRIOR;

7



7.3 integrating the posterior

The basic routine for evaluating the function I(s0) is

double csint(double s0,int nchan,int nens,const int nobs[],const EB* ens,

int* ngl,double xgl[],double lwgl[],

PRIOR prior,double* uncertainty);

The memory pointed to by the arguments ngl, xgl, lwgl, and uncertainty may be
written to by csint, which requires some explanation. Executing the code

int ngl = 0;

double xgl[500], lwgl[500];

double uncer = 0;

double norm = csint(0,nchan,nens,nobs,ens,&ngl,xgl,lwgl,flat,&uncer);

will result in J abscissas xj and J logarithms of weights ln(wj) associated with the
Gauss-Laguerre quadrature scheme being stored in xgl and lwgl respectively, and the
value of J being stored in ngl. In this example, the user is responsible for ensuring
that xgl and lwgl are dimensioned large enough so that ngl <= 500 after the call.
An estimate of the uncertainty of norm (I(0) in this example) due to Monte Carlo
statistical fluctuation is stored in uncer (the last argument may also be a null pointer,
in which case no uncertainty is returned).

On succeeding calls, the code will see that ngl > 0 and will not recalculate the
abscissas and log-weights; this is important since their calculation is time consuming.
Should n, the total number of events observed, change, the user should
set ngl back to zero so that xgl and lwgl will be recalculated. Failure to
set ngl=0 when n changes will merely cause unnecessary extra computation
when n is decreased, but may lead to inaccurate results when n is increased.

More specialized functions are also provided:

void csint2(double s1,double s2,

int nchan,int nens,const int nobs[],const EB* ens,

int* ngl,double xgl[],double lwgl[],PRIOR prior,

double* int1,double* int2,

double* v11,double* v12,double* v22);

stores I(s1) in *int1, I(s2) in *int2, and their covariance matrix (for MC fluctuations)
is stored in *v11, *v12, and *v22. The function

void csint2cut(double s1,double s2,double shi,

int nchan,int nens,const int nobs[],const EB* ens,

int* ngl,double xgl[],double lwgl[],PRIOR prior,

double* int1,double* int2,

double* v11,double* v12,double* v22);

stores I(s1)−I(shi) in *int1, I(s2)−I(shi) in *int2, and their covariance matrix (for
MC fluctuations) in *v11, *v12, and *v22.

8



7.4 limit calculation

The function

double cslimit(double beta,int nchan,int nens,const int nobs[],const EB* ens,

int* ngl,double xgl[],double lwgl[],

PRIOR prior,double* uncertainty);

returns the upper limit su at credibility level β, obtained by solving I(su) = (1−β)I(0)
numerically. In the corresponding case with a flat prior for s cutoff at smax, the upper
limit is returned by

double cscutlimit(double beta,double smax,

int nchan,int nens,const int nobs[],const EB* ens,

int* ngl,double xgl[],double lwgl[],

PRIOR prior,double* uncertainty);

In each case, the uncertainty in the limit due to MC fluctuation is also returned (unless
the last argument is a null pointer). See the previous subsection for instructions
concerning ngl.

7.5 auxiliary functions

The function

void gausslaguerre(double x[],double lw[],int n,double alpha);

does the actual work of calculating the abscissas and log-weights associated with Gauss-
Laguerre quadrature. The function

double galim(double beta,int nchan,int nens,const int nobs[],const EB* ens);

returns a crude Gaussian approximation to the upper limit, which is used as a starting
point by the cslimit routines.

7.6 the example code

The code that calculates the limits for the example of section 5 is provided in the
file example.c. There are four functions associated with random number generation
involved:

double rlx();

void rlxrandomize();

double gamma_gen(double a,double (*ru)());

double gauss_gen(double (*ru)());

The functions rlx and rlxrandomize are interfaces to the fortran CERNLIB ranlux

uniform generator, and gamma_gen and gauss_gen provide random deviates from the
gamma and Gaussian distributions, respectively. As these functions are only used by
example.c for constructing its prior ensemble, and are not considered logically part of
this limit setting software package, their declarations are not in genlimit.h.

9



References

[1] Joel Heinrich et al., “Interval estimation in the presence of nuisance parameters.
1. Bayesian approach.”, CDF Internal Note 7117, (2004),
www-cdf.fnal.gov/publications/cdf7117_bayesianlimit.pdf.

[2] Joel Heinrich, “User Guide to Bayesian-Limit Software Package”, CDF Internal
Note 7232, (2004), www-cdf.fnal.gov/publications/cdf7232_blimitguide.pdf;
www-cdf.fnal.gov/physics/statistics/statistics_software.html.

[3] www-cdf.fnal.gov/physics/statistics/statistics_software.html

[4] William H. Press, et al., “Numerical Recipes”, 2nd edition, (Cambridge University
Press, Cambridge, 1992), §4.5, lib-www.lanl.gov/numerical/bookcpdf/c4-5.pdf;
Eric W. Weisstein, “Laguerre-Gauss Quadrature”, from MathWorld—A Wolfram Web
Resource, mathworld.wolfram.com/Laguerre-GaussQuadrature.html.

[5] Luc Demortier, “A Fully Bayesian Computation of Upper Limits for Poisson Processes”
CDF note 5928, October 2004.
www-cdf.fnal.gov/publications/cdf5928_Bayesian_upperlimits.ps

10

www-cdf.fnal.gov/publications/cdf7117_bayesianlimit.pdf
www-cdf.fnal.gov/publications/cdf7232_blimitguide.pdf
www-cdf.fnal.gov/physics/statistics/statistics_software.html
www-cdf.fnal.gov/physics/statistics/statistics_software.html
lib-www.lanl.gov/numerical/bookcpdf/c4-5.pdf
mathworld.wolfram.com/Laguerre-GaussQuadrature.html
www-cdf.fnal.gov/publications/cdf5928_Bayesian_upperlimits.ps

	Introduction
	The Problem
	Finite Bayesian Prior-Ensemble Approximation
	Integrating the Marginalized Posterior
	An Example
	An Alternative Cross Section Prior
	The Software
	the prior ensemble
	the posterior p.d.f.
	integrating the posterior
	limit calculation
	auxiliary functions
	the example code


